بحث عن الكهرومغناطيسية

بحث عن الكهرومغناطيسية

التعريف بالكهرومغناطيسية

الكهرومغناطيسية (بالإنجليزية:electromagnetism) هو علم دراسة الشحنة الكهربائية من حيث القوى والمجالات المرتبطة بالشحنة الكهربائية، وهو علم يجمع بين علم الكهرباء وعلم المغناطيسية اللذان يشكلان معًا علم الكهرومغناطيسية.[١]

وحتى القرن التاسع عشر، كان يُنظر للكهرباء والمغناطيسية على أنهما علمان منفصلان، إلى أن جاء العالم ألبرت آينشتاين وفي أطروحته للنظرية النسبية الخاصة والتي أثبتت فيما لا يدع مجالًا للشك على أن الكهرباء والمغناطيسية ما هما إلا جانبان لظاهرة واحدة مشتركة ألا وهي الكهرومغناطيسية.[١]

مفهوم المجال الكهرومغناطيسي

المجال الكهرومغناطيسي (بالإنجليزية:electromagnatic field) هي خاصية للفراغ ناتجة عن شحنة كهربائية متحركة مما يؤدي إلى إنتاج مجال مغناطيسي ناشئ عنها، وينتج عن التفاعل المتبادل بين المجالات الكهربائية والمغناطيسية مجالًا كهرومغناطيسيًا، وتحت ظروف معينة يمكن وصف هذا المجال الكهرومغناطيسي بأنه موجة تنقل الطاقة الكهرومغناطيسية.[٢]

وتتأثر الشحنة في هذا المجال المغناطيسي بقوة تسمى قوة لورنتز (بالإنجليزية: Lorentz Force) وهي القوة المؤثرة على شحنة كهربائية تتحرك في مجال كهرومغناطيسي، بحيث ستكون القوة أعلى ما يمكن عندما تتحرك الشحنة بشكل عامودي مع المجال المغناطيسي، وستكون هذه القوة معدومة إذا تحركت الشحنة بشكل يوازي المجال المغناطيسي.[٣]

مفهوم الموجات الكهرومغناطيسية

الموجات الكهرومغناطيسية (بالإنجليزية:electromagnatic wave) هي موجات تنشأ نتيجة التذبذب الحاصل بين المجال الكهربائي والمجال المغناطيسي، وتتشكل الموجات الكهرومغناطيسية عندما يتفاعل المجال الكهربائي مع المجال المغناطيسي، ليكوّنا معًا ما يعرف باسم الموجات الكهرومغناطيسية.[٤]

ويتعامد المجال الكهربائي والمجال المغناطيسي للموجة الكهرومغناطيسية على بعضهما البعض، كما أنهما متعامدان على اتجاه الموجة الكهرومغناطيسية.[٤]

تنتقل الموجات الكهرومغناطيسية بسرعة الضوء، حيث لا تحتاج لوسط ناقل فهي قادرة على الانتقال عبر الهواء أو حتى عبر الفراغ، وتعتبر الموجات الكهرومغناطيسية موجات مستعرضة حيث توصف باتساعها وطولها الموجي.[٤]

علم دراسة الكهرومغناطيسية

يدرس علم الكهرومغناطيسية (بالإنجليزية:Electromagnetism)، التفاعل الحاصل بين المجال الكهربائي والمجال المغناطيسي وكيفية حدوث هذا التفاعل والظواهر التي تنشأ نتيجة لهذا التفاعل، في حين أن القوى الكهربائية والمغناطيسية تقع ضمن نطاق هذه المجالات.[١]

تعتبر هذه المجالات من القوى الأساسية الموجودة في الطبيعة والتي تتواجد في الفضاء بعيدًا حتى عن الشحنة أو التيار الذي ولَدها، ومن دراسة علم الكهرومغاطيسية فإنه لوحظ أن المجال الكهربائي والمجال المغناطيسي ممكن أن يولد أحدهما الآخر.[١]

ومن الأمثلة على هذا التفاعل ما يمكن ملاحظته عند تطبيق مجال مغناطيسي متغير بأنه يولد مجالًا كهربائيًا، وهو ما يحدث أيضًا عند تطبيق مجال كهربائي متغير والذي يولَد بدوره مجالًا مغناطيسيًا.[١]

العلماء المساهمين في نشأة وتطور الكهرومغناطيسية

هناك العديد من العلماء الذين درسوا الكهرباء والمغناطيسية وساهموا في تطور علم الكهرومغناطيسية إلى أن وصل هذا العلم إلى شكله الحالي، وفيما يلي أبرزهم:

أندريه ماري أمبير

العالم الفرنسي أندريه ماري أمبير (Andre Marie Ampere)، عالم فيزياء أسس علم الديناميكا الكهربائية، والمعروف الآن باسم الكهرومغناطيسية، والذي تكريمًا له تم إطلاق اسمه على وحدة قياس التيار الكهربائي الأمبير.[٥]

شرع أمبير في العمل على تطوير نظرية رياضية وفيزيائية لفهم العلاقة بين الكهرباء والمغناطيسية، وأظهر في تجاربه أنه إذا كان هناك سلكان متوازيان يحملان تيارات كهربائية فإنهما يتنافران أو ينجذبان إلى بعضهما البعض، اعتمادًا على ما إذا كانت هذه التيارات تسير في نفس الاتجاه أو في اتجاهين متعاكسين.[٥]

وقد وجد أمبير صيغًا رياضية لتوضيح الظواهر الفيزيائية الناتجة عن هذه التجارب التي قام بها، وأهم هذه التفسيرات هو ما يعرف اليوم بقانون أمبير والذي ينص على أن: "التأثير المتبادل بين سلكين يحملان تيارًا كهربائيًا يتناسب مع أطوال هذين السلكين وشدَة التيار الكهربائي في السلكين".[٥]

هانز أورستد

العالم الدنماركي هانز كريستيان أورستد (Hans Christian Orsted)، عالم فيزيائي وكيميائي اكتشف أن التيار الكهربائي المار في السلك يمكن أن يحرف إبرة البوصلة الممغنطة، وهي ظاهرة تم التعرف على أهميتها بسرعة والتي بدورها ألهمت العديد ممن جاؤوا بعده للعمل على تطوير النظرية الكهرومغناطيسية.[٦]

ومن خلال تجربة قام بها اكتشف أورستد أن إبرة البوصلة المغناطيسية كانت قد تحركت وثبتت بشكل متعامد مع سلك يحمل تيارًا كهربائيًا، حيث كانت تُعَد هذه التجربة دليلًا تجريبيًا واضحًا على العلاقة بين الكهرباء والمغناطيسية.[٦]

مايكل فارادي

العالم الإنجليزي مايكل فارادي (Michael Faraday)، عالم فيزيائي وكيميائي ساهمت تجاربه العديدة بشكل كبير في فهم الكهرومغناطيسية، ويُعَد فارادي أحد أعظم العلماء في القرن التاسع عشر، ويطلق اسمه على وحدة قياس السعة الكهربائية وذلك تكريمًا له.[٧]

وقد كانت مساهمة فاراداي الرئيسية في مجال الكهرباء والمغناطيسية، ويعد أول من أنتج تيارًا كهربائيًا من مجال مغناطيسي، واخترع أول محرك كهربائي ودينامو، وأظهر العلاقة بين الكهرباء والترابط الكيميائي، واكتشف تأثير المغناطيسية على الضوء.[٧]

كما اكتشف وسمى المغناطيسية المعاكسة، والتي تفسر السلوك الغريب لبعض المواد في المجالات المغناطيسية القوية، وقد قدَم الأساس التجريبي، وقدرًا كبيرًا من الأساس النظري أيضًا، والذي أقام عليه جيمس كلارك ماكسويل بناء نظرية المجال الكهرومغناطيسي الكلاسيكية.[٧]

وكان لفراداي أيضًا العديد من التجارب في مجال دراسة الكهرومغناطيسية خصوصًا في مجال الحث الكهرومغناطيسي، والذي يعبَر عنه فيزيائيًا بعلاقة كمية بين المجال المغناطيسي المتغير والمجال الكهربائي الناتج عن هذا المجال المتغير.[٨]

جيمس ماكسويل

العالم الاسكتلندي جيمس كليرك ماكسويل (James Clerk Maxwell)، عالم رياضيات وفيزيائي معروف بصياغته للنظرية الكهرومغناطيسية، يعتبره معظم علماء الفيزياء المعاصرون عالم القرن التاسع عشر الذي كان له التأثير الأكبر في فيزياء القرن العشرين.[٩]

نشأ مفهوم الإشعاع الكهرومغناطيسي مع ماكسويل، ومعادلات المجال الخاصة به، والتي صاغها بناءً على ملاحظات مايكل فاراداي لخطوط القوة الكهربائية والمغناطيسية، والتي مهدت الطريق فيما بعد للنظرية النسبية الخاصة لآينشتاين، ومعادلة تكافؤ الكتلة والطاقة.[٩]

وأيضًا كان لأفكاره أثر في ابتكار فيزياء الكم، وتنبأت نظرية ماكسويل أن الموجات الكهرومغناطيسية يمكن أن يتمَ توليدها في المختبر، وهو ما أثبته هيرتز بعد ذلك، وتُعَد معادلات ماكسويل الأربع وصفًا كاملاً لطرق توليد وترابط المجالات الكهربائية والمغناطيسية مع بعضها البعض.[١٠]

وقد استند ماكسويل في وصفه للمجالات الكهرومغناطيسية على هذه المعادلات الأربع، بحيث تعمل هذه المعادلات على ايجاد المجالات الكهربائية الناتجة عن شحنة أو حتى تلك الناتجة عن مجال مغناطيسي متغير أي لحساب الحث الكهرومغناطيسي الذي أشار إليه فارادي، وحساب المجالات المغناطيسية الدوارة الناتجة عن تغيير المجالات الكهربائية أو التيارات الكهربائية.[١٠]

تطبيقات على الكهرومغناطيسية

هناك العديد من التطبيقات والأجهزة التي تستعمل الكهرومغناطيسية في مبدأ عملها والتي يستعملها البشر يوميًا وباستمرار، وتستخدم في المجالات المتنوعة جميعها، ومن أبرزها ما يلي:[١١]

  • مجال الأجهزة المنزلية

فمصابيح الفلورنست وأفران الميكرويف ومكبرات الصوت في الأجهزة الكهربائية جميعها تعمل على مبدأ الكهرومغناطيسية.

  • مجال التطبيقات الصناعية

فإنَ العمليات فيها تعتمد على المحركات والمولدات الكهربائية والرافعات وجميعها يعتمد على مبدأ الكهرومغناطيسية في عمله.

  • بعض الأجهزة الطبية

مثل جهاز الرنين المغناطيسي (MRI) والذي يستخدم الكهرومغناطيسية ليصور التفاصيل الدقيقة داخل جسم الانسان.

  • أجهزة الاتصالات

والتي تستخدم جميعها الكهرومغناطيسية في عملها؛ فيتم نقل المعلومات من جهاز إرسال إلى جهاز استقبال على شكل طاقة، وتنقل هذه الطاقة عبر مسافات طويلة من خلال الموجات الكهرومغناطيسية بترددات عالية، تسمى هذه الموجات أيضًا باسم ميكروويف أو موجات الراديو عالية التردد.

المراجع

  1. ^ أ ب ت ث ج Sharon Bertsch McGrayne, "electromagnetism", Britannica, Retrieved 4/11/2021. Edited.
  2. Aakanksha Gaur, Adam Augustyn, Adam Zeidan, "electromagnetic-field", britannica, Retrieved 22/11/2021. Edited.
  3. prof.mark warner, "lorentz force", isaac physics, Retrieved 22/11/2021. Edited.
  4. ^ أ ب ت "Definition of 'Electromagnetic Waves'", the economic times, Retrieved 4/11/2021. Edited.
  5. ^ أ ب ت J.B. Shank , "André-Marie Ampère", Britannica, Retrieved 4/11/2021. Edited.
  6. ^ أ ب "Hans Christian Ørsted", britannica, Retrieved 4/11/2021. Edited.
  7. ^ أ ب ت L. Pearce Williams (18/9/2021), "Michael Faraday", britannica, Retrieved 4/11/2021. Edited.
  8. "Faraday's law of induction", Britannica, Retrieved 4/11/2021. Edited.
  9. ^ أ ب Cyril Domb (1/11/2021), "James Clerk Maxwell", Britannica, Retrieved 4/11/2021. Edited.
  10. ^ أ ب "Maxwell's equations", britannica, Retrieved 4/11/2021. Edited.
  11. "Applications of Electromagnetism", electronics hub, 19/9/2015, Retrieved 4/11/2021. Edited.
652 مشاهدة
للأعلى للأسفل