بحث رياضيات عن المثلثات

بواسطة: - آخر تحديث: ١٣:١٠ ، ١٢ يونيو ٢٠١٦
بحث رياضيات عن المثلثات

تعريف المثلث

هو شكل هندسي أساسيّ في الرياضيات، ينتج عند رسم قطع مستقيمة (تسمّى الأضلاع) تصل بين ثلاث نقاط ليست على استقامة واحدة (تمثّل الرؤوس)، أي أنّه شكل مغلق مكوّن من ثلاثة أضلاع وثلاث زوايا.


أنواع المثلثات

تّم تقسيم المثلثات حسب الزوايا الداخلية وأطوال الأضلاع كما يلي:


حسب الزوايا الداخلية للمثلث

  • مثلث حادّ الزوايا: هو المثلث الذي تكون جميع زواياه الداخلية حادةّ، أي قياس كل زاوية أقل من تسعين درجة.
  • مثلث قائم الزاوية: في هذا المثلث هناك زاوية يكون قياسها تسعين درجة تسمّى بالقائمة، يقابلها أطول ضلع في المثلث ويدعى الوتر.
  • مثلث منفرج الزاوية: هو المثلث الذي يحتوي على زاوية منفرجة، والتي يكون قياسها أكبر من تسعين وأقل من مئة وثمانين.


حسب أطوال أضلاع المثلث

  • مثلث متساوي الأضلاع: تكون فيه أطوال الأضلاع الثلاثة متساوية، وينتج أيضاً تساوي الزوايا، حيث يكون مقدار كلّ زاوية ستّين درجة.
  • مثلث متساوي الساقين: هو المثلث الذي يتساوى فيه طول الضلعين، والزاويتين المقابلتين لهما متساويتين.
  • مثلث مختلف الأضلاع: في هذا المثلث قياس تختلف جميع أطوال الأضلاع، كما تختلف جميع قياسات الزوايا.


قوانين تستخدم في قياس المثلثات

مساحة المثلث

مساحة أي مثلث تساوي حاصل ضرب طول نصف القاعدة في الارتفاع، ويقصد بالارتفاع العمود النازل من إحدى الزوايا إلى الضلع المقابل والذي يطلق عليه القاعدة، أي أنّه يصنع زاوية قائمة مع القاعدة.

مساحة المثلث= 1/2القاعدة×الإرتفاع


محيط المثلث

محيط المثلث يساوي مجموع قياس أطوال الأضلاع الثلاثة، بشرط تساوي وحدات القياس.

محيط المثلث= طول الضلع الأول+طول الضلع الثاني= طول الضلع الثالث


نظرية فيتاغورس

نظرية معروفة جداً وضعها العالم اليوناني الشهير فيتاغورس، تستخدم فقط في المثلث قائم الزاوية وتنص على أن مساحة المربع المنشأ على الوتر يساوي مساحة المربعين الواقعين على ضلعي القائمة،وأيضاً نستطيع صياغتها كم يلي:


مربع طول الوتر=مربع ضلع القائمة الأول+مربع ضلع القائمة الثاني. فإذا كان المثلث أ ب ج مثلث قائم الزاوية في ب فإن العلاقة بين أطوال الأضلاع هي: (أج)^2 = (أب)^2 +(أج)^2


تطابق المثلثات

يتطابق أي مثلثين إذا تساوت أطوال أضلاعهما المتناظرة وتساوت قياسات زواياهما المتناظرة أيضاً، وهناك حالات معينة نستطيع أن نعرف من خلالها إذا كان هناك تطابق وهي كالتالي:

  • (ضلع، ضلع، ضلع) ويقصد بهذه الحالة أنّ المثلثين يتطابقان إذا كان لهما ثلاثة أضلاع متماثلة ومتساوية في القياس.
  • (ضلع، زاوية، ضلع) يتطابق المثلثان إذا تساوى فيهما طول ضلعين وزاوية محصورة بينهما، ويشترط أن تكون محصورة.
  • (زاوية، زاوية، ضلع) إذا تساوى طول ضلع وزاويتين في المثلث الأول، مع طول ضلع وزاويتين متناظرتين في المثلث الثاني.


تشابه المثلثات

يقال بأنّ المثلثين متشابهين إذا تساوت فيهما قياسات الزوايا المماثلة، أي أنّ كلّ مثلثين متطابقين يكونان متشابهين، والعكس ليس صحيحاً. نقول بأنّ المثلثين متشابهين في الحالات التالية :

  • يتشابه المثلثان إذا كانا متطابقين.
  • يتشابه المثلثان إذا كانت أطوال أضلاعهما المتناظرة متساوية.
  • يتشابه المثلثان إذا كانت قياسات زواياهما المتناظرة متساوية.


حقائق عن المثلثات

  • للمثلث ستة عناصر: ثلاثة أضلاع وثلاث زوايا.
  • مجموع زوايا أي مثلث الداخلية تساوي مئة وثمانين درجة.
  • في أي مثلث مجموع طولي أي ضلعين دائماً أكبر من طول الضلع الثالث.
  • عكس نظرية فيتاغورس صحيح، فإذا كان هناك مثلث فيه مربع الضلع الأكبر يساوي مجموع مربعي الضلعين الآخرين فإن المثلث يكون قائم الزاوية.
  • الزاوية الخارجية في المثلث تساوي مجموع الزاويتين الداخليتين البعيدتين، أي غير المجاورة لها.
511 مشاهدة